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Preface

This thesis is bhasically an extensive survey done
in the area of Availability as an important measure of sys-
tem effectiveness. Availakility appears to be a more
-appropriate mmasure than reliability for measuring the
effectiveness of maintained systems because it includes
reliability as well as maintainability.

I would like to thank my thesis advisor, Professor
A. H. Moore, for his most valuable advice and guidance
during this study. I would also like to thank Dr. Joseph
Cain, my reader, for his help during the study. Also, I
am grateful to Mrs. Phyllis Reynolds for her help in
typiny this thesis. I am alsc grateful to Mrsg. Linda
Stoddart of the Air Force Institute of Technology Library,
for her help in obtaining several references.

Finally, a wish to recogize the wonderful effort
of my wife, Eglal, who encouraged me to strive, to search,

to study and, ultimately, to succeed.

-—— Ahmed A. El Shanawani
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Abstract

Availability appears to be a more appropriate
measure than reliability for measuring the effectiveness
of maintained systems because it includes reliability as
well as maintainability. This thesis is a survey and a
systematic classification of the literature relevant to
availability. Emphasis in this thesis is centered on a
variety of topics related to availability. The topics
discussed are: the definition and concepts of the avail-
ability, the probability density functions of failure
times ana of repair times, system configurations; and the
various approaches employed to obtain the availability
models; effect of preventive maintenance policies on avail-
ability; availability parameters in the model; and system

optimization.
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AVAILABILITY OF MAINTAINED SYSTEMS

CHAPTER 1
INTRCDUCTION

Increasing complexity of modern-day equipment, both
in the military and commercial areas, has brought with it
new engineering probiems involving high performance, reli-
ability and maintainability. Reliability has long been
considered as a measure of system effectiveness. However,
it has proved to be an incomplete measure of effectivenecs
because it does not consider maintainability, another mea-
sure of system performance. With increasing complexity
and the resulting high operational and maintenance costs,
greater emphasis has been placed on reducing system main-
tenance while improving reliability. In this regard,
availability, which is a comhined measure of reliability
and maintainability, has received wide usage as a measure
of maintained systems effectiveness.

This thesis is a survey and a systematic classifi-
cation of the literature relevant to availability. Empha-
sis in this thesis 1s centered on a variety of topics
related to availability. In Chapter I1, basic concepts
include definition and concepts of availability, failure
and repair times distributions, and system configuration.

1
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In Chapter III, the different approaches used in obtain-
ing availability models are discussed. In Chap =r IV,
many availability models using the Markovian approach are
discussed. In Chapter V, the effect of preventive main-
tenance policies on availability is exnlained and classi-
fication of the availability parameters used in the model

and system optimization is presented.
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CHAPTER II
SURVEY ON BASIC ELEMENTS OF AVAILABILITY

In describing the availability of a given system
it is necessary to specify three things:

1. The component failure process,

2. The repair or maintenance process, and

3. System configuration.
In this chapter, these three characteristics will be
studied; but before exploring these characteristics, we

would like tc discuss the wvarious definitions of avail-

ability.

Definition and Concepts of Availability

There are two classificatiors for availability.

Classification 1

In this classification the definition depends on
the time interval; availability 1s classified intco three
categories (Figure 2.1): (1) instantaneous availability,
(2) average uptine, and (3) steady-state availability [1351.

1. Instantanecus availability, [A(uv)], is defined
as the probabilaity that the system 1s operational at any
random time, t.

2. Average uptime availability, [A(T)],is the proportion

of time .in a specified interval (0, T) that the system is

.
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Fig. 2.1. Graph Showing Instantaneous, Average Uptime,
and Steady State Availability
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aviailable for use and 1s expressed as:

T
A{T) = & [ A(tydt (2.1}

-’

0

3. Steady stage availability, A(x), is the uptime

avajilability when T+« and is given by:
A{x~) = lim A(T) (2.2)
T+

The representation of availability which is appropriate
depends upon the system mission and its conditions of use.
The steady-state availability may be the satisfactory mea-
sure for systems which are to be operated continuously.
The average uptime may be the most satisfactory measure
for systems whose usage is defined by a duty cycle. For
systems which are required to perform a function at any
random time, the instantaneous availabili*ty may be the

most satisfactory measure.

Classification 2

In this classification the definition depends on
the type of downtime. Availability is classified also
into three categories: (1) .nherent availability,

{2) achieved availability, and (3) operational availabil-

ity (Figure 2.2).
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In this category, the form used to describe system
availability is that of an expected value function which
assumes steady-stage conditions.

1. Inherent availability, Ai, is defined as the
probability that a system, when used under stated condi-
tiens, without considering any scheduling or preventive
action, in an ideal support environment, will operate
satisfactorily at a given point in time. It excludes
ready time, preventive-maintenance downtime, logistic time,
and waiting or administrative downtime. It may be

expressed as:

_ MTBF -~
A{ ® MTBF + MTTR (2.3)
where:
MTBF = mean time between failure, and
MTTR = mean time to repair.

2. Achieved availability, Aa’ is defined as the
probability that a system, when used under stated condi-
tions in an ideal support environment (i.e., available
tools, spares, manpower, etc.j, will operate satisfactorily
at a given point in time. It excludes logistic tim= and
waiting or administrative downtime. It includes active
preventive and corrective maintenance downtime. It can

be expressed as:
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where:

MTBM mean time between maintenance, and

M = Mean maintenance time resulting from both
corrective and preventive maintenance
actions.

3. Operational availability, AO, is defined as
the probability that a system, when used under stated con-
ditions in an actual operational environment, will operate
satisfactorily at a given point in time. 1t includes
ready time, logistic time, and waiting or administrative
downtime. It can be expressed as:

- MTBM + Ready Tine (2.5)
o (MITBM + Ready Time) 4 MDT Ve

A

where:

the time in which the system is ready
but not in operation,

Ready time

MDT = Maintenance downtime including logis-
tic downtime and waiting or adminis-
trative time, and

MDT = M + delay time.

Operational availability appears to ke a more
realistic measure than the other two measures. However,
because delay time is determined by administrative and
supply factors which depend on the environment of the

system, this definition will not be usel.




The Failure Process Distributions

The failure times distributions describe the comn-
ponent failure process; i.e., the probability law govern-
ing failures. There are two ways of postulating a com-
ponent failure distribution:

1. Physical reascning theory. In this method,
we depend on pﬁysical reasoning to assume a form of the
failure distribution. This method is useful when there is
little a priori information.

2. Using observed empirical evidence. 1In this

method, attempts can be made to fit a failure density
function to the available data.
Of course, a combination of these two methods is optimal
if sufficient statistical data are available and insight
into the failure distribution can be obtained by physical
theory.

Many types of failure distributions have been
used in the literature. Classification of references on
availability according to various types of failure time
distributions (exponential, Erland, Weibull, Gamma,
Rayleigh, normal, log-normal, uniform, extreme value,
and general) is given in Table 2.1.

The most frequently employed distribution is the
negative exponential distribution. To justify the use
of the exponential failure law, much experimental and

operational data have been collected. One of the earliest




TABLE 2.1

CLASSIFICATION OF REFERENCES ON AVAILABILITY
WITH REGARD TO FAILURE TIME DISTRIBUTIONS

Name of

Distribution References

Exponential l1-4, 7-10, 14, 16, 18, 20-25, 28, 29,
35, 39, 41-43. 47, 48, 50, 53-57, 59, 60,
63' 65-’70, 74-77' 83, 86-88' 90, 93, 94[
96, 97, 103, 106, 109, 112, 113-122,
126-128, 130, 137, 139, 140, 143-145,
150, 152, 154-158, 164, 165, 167, 168-
173, 175-179, 192, 193

Erlang 41, 91, 104, 151, 157, 165

Weibull 10, 16, 41, 88, 112, 113, 157, 165,
179, 193, 196

Ganma 10, 16, 41, 88, 112, 113, 157, 165,
179, 182

Rayleigh 112, 116, 165

Normal 10, 16, 21, 41, 56, 112, 113, 117,
i65, 179, 182

Log-Normal 1o, 14, 16, 40, 58, 113

Uniform 27, 116, 165

Extreme Value 10, 113

General 19, 20, 30, 47, 51, 66-68, 105, 110-

{Arbitrary) 112, 126, .31, 133-136, 142, 144, 162,
166, 190

10




reports of a statistical nature was made by Davis [49],
and subsequent studies by Carhart [37] and Boodman [22]
indicate that this distribution adequately fits failure
experience. Cox and Smith [46] Jdemonstrate that the
equipment generally will exhibit the exponential failure
pattern provided that the components are replaced as they
faeil, even though certain components within the equipment
may not exhibit it.

This distribution seems to apply to all electronic
equipment. The rationale behind this is that the electronic
components do nct fail from wearout or fatigue, but from
being overstressed; and these overstressed conditions are
purely randomly distributed. In addition, all military
standards and 90 percent of the military reliability calcu-
lations are based on random failures [(112]. The most
attractive feature in using the exponential distribution
is that it enables one to deal with a constant failure
rate. Hence, it provides an advantage from a mathematical
tractability point of view even though it is not always
justified.

Bocchi [21] denonstrated the suitability of using
the exponential failure distribution for mechanical reli-
ability prediction. The rationale for that is during the
useful life period when failures are due to poor quality
and wearout is low, faillure rates should tend to be some-

what constant. The main contributor to the failure rate




is when random high stress levels exceed the strength of
the components. Other components which also justify the
use of exponential failure distributions are tube puncture,
capicitor breakdown, fuse blowout, many aircraft and
missile parts, airborne radars and {ire control systems.
References that justify the use of the exponential failure
distribution are References 22, 37, 46, 49, and 196.
After the exponential distribution, the Weibull

distribution is probably the most widely used distribution.

The hazard function of the Weibull given by

B-1
) ’ t>0 (2.6)

h(t) = % (

Dirt

will decrease in time if B <1, will increase if B > 1, or
will be constant if 8§ = 1 which is the exponential case.
The Weibull distribution has been used to describe fatigue
failure, vacuum tube feilure, and ball bearing failure.

It is the most popular parametric family of failure dig-
tri .utions.

The Raleigh distribution is a single parameter

density which holds for a component with a linearly
increasing failure rate (At).

The rectangular or uniform distribution may well
be employed if every component has the same failure rate
or each item takes equally as long to repair.

The Erlang distribution is used to describe both

(, the failure and repair times. Kodama [104]) used the

12
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Erlang as a failure distribution. Since the Erlang dis-
tributions are a special case of the incomplete gamma
distributions (shape parameter is an integer), they will
fit many an perhaps most of the distributions cncountered
in practice, and mathematical treatment will be easy.

The normal distribution describes wearout failures.
By wearout failures we mean those cases in which no overt
or abrupt failure has occurred but the item has more or
less graduvally reached the failed state through the deteri-
oration or depletion of some gquantity, structure, or func-
tion necessary for useful operation. In this type of
failure it is noticed that the component's death tends to
cluster around a mean life time, t; half the failures
occurring before and half afterward. There are few very
early or very late failures, the failure rate being low
initially and reaching a maximum at the meuan lifetime.
The hazard is very low initially, and rises rapidly after
t. This familiar pattern of failure can be described by
the normal distribution [37] in which the failure rate as
a function of operating time, t, is given by:

t-u 2
£(t) = —1— e 5075) (2.7)

ov 27
The normal distribution failure pattern applies to
systems which exhibit small variation in failure resistance

among the individuals within a population and which are

13




subject to small variations in environmental severity.
Further, the failure resistance of the mechanism deteri-
orates with time and operational procedure requires that
each item be used until ultimate failure. Davis [49]
states that the normal distribution characterizes the
failure of dry cells and light bulbs. Bell [1€] men-
tioned also that vacuum tubes used in commercial and mili-
tary electronic eguipment follows the normal failure rate
besides significant fraction of the commercial aircraft
parts.

Many life length distributions occurring in prac-
tical applications are obviously not normal because they
are markedly skewed whereas the normal distribution is
symmetric. The gamma family of distributions is skewed
and therefore may seem more natural than the normal family
in these cases.

The gamma density function is described by:

A Aty 2 lemAt

I'(a)

£(t) A,a> 0, t >0 (2.8)

The gamma has increasing failure rate for ¢ > 1 and, in
this case, the failure rate i1s bounded above by A; for
a < 1, the failure rate is decreasing.

The log-normal density is defined as:

f { t) o .ul:: exp [ ,]_2_ ( lOg t - U) 2 ] oo o ( 2.9 )
to V2mn 2c 00
£>0

14
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This is a skew distribution in which both long
and short downtimes occur more frequently than would be
the case in data with the same value fitted to an exponen-
ticl distribution. The failure rate of the log-normal
distributicn increases at first and then eventually
decreases to zero. For this reason, the log-normal has

found disfavor as a failure distribution. It has been

proposed as a reasonable family of distributions for
describing the length of time to repair a piece of equip-
ment, however, and there is some empirical evidence for
this assertion [10].

Many authors including Ccppeola [45] and Howard
[92], indicate that downtimes are geﬁerally well fitted
by a log-normal distribution. Shelley [163] pointed out
the use of log-normal for cargo aircraft perfectly fits
the data, especially at the upper percentile points.
Recent reliabilities studies on various pctential communi-
cation systems indicales that many semiconductor devices
have lifetime distributions well represented by the
log-normal [40].

On the besis of actual observation of time to
failure it is difficult to distinguish among the various
nonsymmetrical probability functions. Thus, the differ-
ences among the gamma, Weibull, and log-normal distribution

functions become signitflcant only in the tails of the

e e e e e e i . A A L 5 By




distribution but actual observations are sparse in the

tails because of limited sample sizes.

The Repair Process Distributions

Table 2.2 shows the classification of references
on availability with regard to a variety of repair time
distributions: exponential, Erlang, Weibull, Gamma,
Rayleigh, normal, log-normal, uniform, and general.

The exponential distribution is used as a theoreti-
cal distribution for the repair time because of its ana-
lytical properties and computational purposes [188].

Rohn [154] maintains that the essential characteristic

of repair times of complex electronic equipment is stated
as a high frequency of short repair times and a few long
repair times; thus, this type of behavior suggests repre-
sentation by an exponential distribution.

As mentioned before, the log-normal distribution
is quite popular for the distribution of repair times.

In many situations, repair times are best described by the
iog-normal distribution, and many authors (45, 92, 163,
179, 187] Jjustify the use of the distribution. Studies on
airborne radar equipment and ground ecuipment for surface-
to-air missile systems have indicated observed repair time
distributions that best fit the log-normal distribution

{77, 162).

16
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TABLE 2.2

CLASSIFICATION OF REFERENCES ON AVAILABILITY
WITH REGARD TO REPAIR TIME DISTRIBUTIONS

Name of

Distribution References

Exponential 1-4, 7, lO, 18, 23’ 24, 25, 35, 39’ 43,
50, 53-56, 59, 63, 68-70, 74-75, 86-88,
90, 93, 94, 103, 107, 112, 114, 116,
118, 120, 122, 127, 137, 139, 140, 143,
154, 156-158, 165, 172, 173, 175, 188,
192, 193

Erlang 69, 122, 126, 144

Weibull 29, 112, 193

Gamma 24, 29, 116, 140, 144, 146, 157

Raleigh 112, 116

Normal 14, 20, 47, 56, 112

Log-Normal

Uniform

General
(Arbitrary)

10, 20, 29, 47, t6, 60, 83, 88, 102,
179

116, 122

10, 19, 28, 30, 42, 43, 48, 51, 65, 74,
76, 96, 97, 104, 105, 106, 109, 110-112,
119, 121, 126, 130, 131, 133-136, 142,

144, 145, 150, 151, 162, 164, 166, 167,
168, 171, 190
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System Configurationsg

Classifications of references on system configura-
tion are shown in Table 2.3. The logical zpproach in the
availability analysis is to decunpose the system under
consideration into functional entities composed of com-
poaents or subsystems. This subdivision generates a block-
diagram and describes the system oneration. To fit this
logical structure, models are formulatad. In this way,
the block-~diagram of the type of the system configurations
describes how the components are functionally connected
and the rules of opevation.

The simplest structure in availability analysis
is the single configuration in which only one component
comprises a system.

The series configuration is the next simplest and
most common structure. In this configuration the func-
tional operation uf the system depends on the operation
of all system cowponents. The redundant configuration can
be divided into two main categories--the parallel redun-
dant configuration and the standby redundant coniiguration.
In the parallel redundant configuration the system operates
if any cone of the components operate. This configuration
is cften called the full redundant configuration. On the
othey hand, if the system operation requires more than one
component to operate, this configuration is called the par-
tial redundant configuration. In the parallel system all

18




a TABLE 2.3

CLASSIFICATION OF REFERENCSS ON AVAILABILITY
WITH REGARD TO SYSTEM CONFIGURATIONS

R |

System
Configuration References
Single 6, 7, 10, 14, 25, 28, 35, 39, 53, 75,
105, 114, 116, 1%6, 157, 165, 179,
182, 193
Series 10, 14, 23, 53, 78, 90, %6, 119, 126,
130, 142, 143, 160, 164, 165, 173, 174,
179, 190
Redundant
Parallel 2-5, 7, 10, 14, 24, 35, 39, 54, 59, 63,
Redundant €8, 74, 75, 77, 85, 87, 88, 90, 94, 103,
104, 111, 1is8, 120-122, 139, 140, 143,
152-155, 157, 158, 165, 173, 179, 192,
193
Standby 4, 10, 13, 14, 19, 30, 39, 42, 43, 48,
Redundant 55, 59, 65, 68, 77, 78, 88, 93, 104,
109, 121, 128, 132-137, 140, 142, 144,
152, 157, 165-167, 168, 171, 179
Perfect 13, 18, 30, 39, 42, 43, 65, 78, 104,
Switch 109, 136-139, 166, 171
Imperfect
Switch 48, 96, 137, 140, 142
Cold 13, 30, 39, 59, 65, 76, 78, 79, 125,
Standby 128, 134, 136, 137, 160, 166
3
Warm
Standky 19, 42, 43, 104, 144, 167, 170, 171
Series 10, 39, 54, &5, 75, 106, 110, 112, 143,
Parallel 165, 175, 179
Complex 60, 90
: rm— " e
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the components are turned on at the beginning and operate
until failvre occurs. Using less reliable units in redun-
dant configurations is one of the methods of coping with
the problem of designing reliable systems. For nonmain-
tained systems, redundancy is best applied at the component
level rather than at the system level. However, for systems
whose components can be repaired as they fall, to have
redundancy at the component level may not be the best
policy. The reason 1is that i€ component redundancy is
employed, repair may not be possible while the system is
operating; whereas, a failure with system redundancy could
be repaired.

In the standby redundant system the parallel com-
ponents are not active at the same time. At the start of
operaticn the switch connects the input to one component.
Meanwhile, other components are left in standby with zero
failure rate or a rfailure rate lower than the active com-
ponents. The system in which standby components cannct
fail is then referred to as ccld standby. The system is
called warm standby if only one component cperates at a
time, and the standby compcnent has a lower failure reate
than the active component, but not zero failure rate as in
cold standby.

The standby configuration can be divided according
to the type of switching t«o twu types: (1) perfect switch-
ing, and (2) imperfect switching. If the switching device
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is assumed to be perfect, the standby system is better
than the parallel system. The situation changes when the
standby component ages and the switch is imperfect.
Figure 2.3 represents the different types of system con-
figurations.

Based on the configurations discussed above, the
system configuration concept is further extended to include
series parallel, parallel series, and complex. By complex
configuration we mean a system which is not purely series,

parallel, series parallel or parallel series.




System Configuration
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Perfect
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Fig. 2.3. Different Types of System Configurations




CHAPTER III

APPROACHES USED IN OBTAINING
AVAILABILITY MORELS

Markovian

The Markovian approach in the formulaticn of the

availability model has been frequently used assuming
exponential distributions for failure times and repair

times (see Table 3.1 for references). To obtain the avail-
ability model of a given system using this approach,

Sandler [157] suggests that the following to be specified:
(1) the component failure process, (2) the system configura-
tion, (3) the repair policy, and (4) the state in which the
system is defined to be failed {(see Chapter IV for
details).

For an illustration, let us cconsider a single
component system with a constant failure rate, A, and a
constant repair rate, u (exponential distribution). Since
repair is possible, transitions can be made back and forth.
Thus, two states can be designated: (1) State 0--the system
is operating, and (2) State l--the system has failed and
is under repair.

Using conditional probabilities, the transition

matrix can be constructed and the differer ial equations

23
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TABLE 3.1

APPROACHES USED IN OBTAINING AVAILABILITY MODEL

Classification References
Markovian
Instantaneous 10, 19, 25, 39, 63, 69, 72, 93, 107,
Availability 127, 132, 134~137, 153, 157, 165, 166,
178, 192
Average Uptime
Availability 10, 39, 63, 69, 157
Steady-State 2, 3, 5, 10, 24, 25, 39, 42, 50, 53-56,
Availability 59, 63, 69-74, 78, 79, 87, 90, 93, 94,
103, 109, 111, 1i4, 120, 134-~-137, 139,
140, 156, 157, 160, 165, 167, 171, 175
Ratio of Uptime 1, 4, 14, 20, 23, 35, 47, 51, 60, 65,
to Total Time 68, 75, 83, 89, 92, 96, 100, 110-112,
: 116, 119, 120, 1390, 131, 143, 158, le62,
172-174, 188, 190, 192
___MTBF 4, 20, 23, 51, 65, 75, 89, 92, %6, 110,
MTBF+MTTR 119, 120, 12¢, 143, 158, 172, 173, 190,
193
MTBM
MTBM+M 20, 51, 1il2
Uptime
Uptime+Downtime 20, 51, 60, 1.1, 116, 131, 164, 174
Integral Theory 68
Monte Carlo
Simulation 60, 123
Single-Cycle
Availability 116, 131
Muitiple-Cycle
Availability 96
Confidence Interval
of Availability 25, 29, 131, 172-174

Bayesian Approach

24, 25, 73, 173, 174
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describing the stochastic behavior of the system can be

formed.
dPo(t)
I = -}\Po(t) + pPl(t) (3.1}
dPl(t)

where:

P. (t) denotes the probability of the system being
i . ) :
in state 1 at time t.

If the system is in operation at time t = 0, the initial
conditions are PO(O) = 1 and Pl(O) = 0. Transforming equa-
tions (3.1) and (3.2) into Laplace transforms under the

above initial conditions, we have

(s+A)P0(s) - uPl(s) =1 (3.3)

- APO(S) + (s+u)Pl(s) = 0. (3.4)

Now the instantaneous availability, A(t), is the inverse
. _ 1 .
Laplace transform of Po(s); i.e., A(t) 7;5% {Po(s)}.

Solving

{(A+u) t

= = ———LL—- - _l_ -
Alt) = Py(t) = 5=k e (3.5)

the average uptime for some definite period of time (0, T)

can be found by integrating A(t) over this time interval

and dividing by the total time.
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J alt)ar = ;o + —A (1-e~ A1) T, (3.6)
H ) “T
If we are interested in the long-range availability, we

can let T+« and find the steady-siate avaiiability

w) = —H—
Alw) = 7o (3.7)

Due to analytical and computational difficulty,
not much work has been done when failure and repair times
are other than exponential. For the analysis of the
redundant system with exponential failure pdf and the
general repair time distribution, Branson and Shah emgploy
a semi-Markov process. Hall and others [88] analyze the
redundant system when failure times and repair times fcllow
combinations of the exponential, Weibull, and log-normal
distributions. They illustrate the use 0of Fourier series
for evaluating the inverse lLaplace transformation. Although
non-Markovian processes have not been studied as widely
as Markovian processes, Sandler {157] shows that it is
often possible to treat a stochastic process o1 the non-
Markovian type by reducing it to a Markov process., Tnis
can be done by increasing the number of states, each being
described by a constant trensition rate. As an exanple, a
single component system with an Erlang failure distribution

and the cdf

-At -2t . .
e 'Y - Aee t (3.8}

i
[
|

F(t)
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and an exponential repair distribution with the cdf
G(t) = 1 - &'t (3.9)

by assuming that the component goes through two exponen-
tial phases each of average length 1/), the process can

be reduced to a Markov process with three states:

(1) State 0--the system is operating in the first phase,
{2) State 1--the system is operating in the second phase,
and (3) State 2--the system has failed and is under repair.

This formulation leads to the transition matrix:

0 1 2
0/1—7\ A o‘\
p=11 o0 1-2 ) {3.10)

The solution of this matrix is simply
, , ~At a
R(t) = Po(t) + Pl(t) = e {l+xt) (3.11)

Regqulinski [153] used the Markovian anproach to
model the availability function for computer networks.
Gates [72) presented an analytic technique for evaluating
the availability of complex systems which are r@quifed to
operate around the clock, but which are staffed with main-
tenance personnel periodically on a shift basis. He shows

that such gystems can be modeled as a periodically, time
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varying Markov process governed by a repeatable sequence
of tranzition matrices.

Doyon [56] utilizes the steady-state availability
concept to analyze a computer system consisting of a data
processor and tape units. The purpose of the analysis is
to solve for the MTTR of the redundant system. The author
points out that defining the system states and formulating
the appropriate system steadv-state availability transi-
tion rate diagram is the step requiring the greatest degree
of ingenuity and expertise. By contrast, subseguent steps
te obtain a numerical solution for the system MTTR involves
only routine mathematical manipulations.

The above apprcach is called the differential
theory in reliability since the states of the system can
be expressed in.the form of a set of differential equations
whose solution permits the evaluation of reiiability and
avalilability of the system. Wnien failure and/or repair
time are not exponentially distributed, the differential
theory is not applicable; so the integral theory was intro-

duced to overcome differential theory limitations.

Integral Theory of Reliability

The first paver on integral theory was published
in 1973. In 1974 integral theory was used to evaluate
the reliability of complex systems, such as telephone

exchanges, whose repair time was not exponentially

28
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distributed [Galetto, 68]. 1In 1975 it was proved that
integral and differential theories are equivalent as
Markovian processes are studied. In the same year,
integral theory was applied to state a general model for
system cost-effectiveness, as failure and repair rates
are assumed constant. In 1977 Galetto used the differen-
tial theory for obtaining the reliability and availability
of different system configurations and drive formulas for
MTTR (mean time to repair), mean uptime (MUT) and mean
downtime (MDT) as a function in MTTR and then to derive
steady state availability, Afe)}:

~ MUT
Al=) = ST + MDT (3.12)

i MTTF o .
Galette shows that the ratio YTTF 4 MTTR 1° @ meaningless

definition of availability, unless series systems are

considered.

The integral theory of reliability overcomes the
limitation of the differential theory especially for the
mechanical systems since the failure rate for such sys-

tems is increasing as they age during operation.

Ratio of Uptime to Total Time

Another approach in the formulation of the avail-
ability model is the use of the definitions inherent,
achieved, and opecrationsal availability. When only correc-

tive maintenance is considered, the inherent availability
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which is a function of MTBF and MTTR is employed. In this
case, MTBF is computed by:

[eo]

MTBF =Jﬁ R(t)dt (3.13)
0

where:

R(t) is the reliability function of the system.
MTTR is interpreted a: synonymous with mean corrective
maintenance time. When both corrective and preventive
maintenance are considered, the achieved availability which
is a function of MTBM and M is introduced where MTBM is
the mean interval of all maintenance requirements, both
corrective and preventive. M is the downtime resulting
from both corrective and preventive maintenance. For
example, when preventive maintenance is scheduled at time,

T, it is expressed by

T

MTBM =‘[ R{s)ds (3.14)
0
M is expressed as:
Mcfc + Mpfp
M = R (3.15)
c p

where:

M 1s the downtime resulting from both corrective
and preventive naintenance,
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M is the mean corrective maintenance time,
M_ is the mean preventive maintenance time,

f is the number of corrective maintenance
actions, and

f 1is the number of preventive maintenance

P actions.

Operational availabiliity is an appropriate me.
sure if downtime includes logistics and administrative time
as well as active maintenance downtime. For the classifi-

cation of references, see Table 3.1.

Mcnte Carlo Simulation

Whenever the problem is extremely complex and/or
experimentation is desirable but costly, Myers suggests
the use of the Monte Carlo technique, and illustratis a
few examples of this solution technique. Faragher and
Watson [60], however, maintain that availability ontlysis
of complex systems utilizing Monte Carlo simulatior. tech-
nique have revealed a lack of realism because they re
inflaxible with respect to configuration changes, thus
making them unsuitable for optimization studies of zvail-
ability through compcnent redundancy. By incorporating
engineering and mathematical analysis, they present a
realistic methodology which involves an engineering descrip-
tion of the system, the formulation of the simulation
model, and the computer and engineering aralysis of “the

systoem.

31




Single-Cycle Availability

The Jdefinition of availability given by the
fraction of the total desired operating time has been
quite widely used as a main design criterion. However,
there is no probabilistic qguarantee that a specified avail-~
ability value will ever be reached other than approxi-
mately in practice. Martz [1ll6], therefore, provides a
definition of single cycle availability that incorporates
a probabilistic guarantee that the availlakility value will
be reached in practice. Single-cycle avallability is

defined as the value, AV, such that:
P(A > Av) = v 0 <v <l (3.16)

By specifying v we have a probabilistic guarentee on the
frequency of occurrence ouf the corresponding availability
value.

For example, if we require a system availability
Av = 0.99 and v is chosen to be 0.90, in this case, we
are 90 percent certain that our design wvalue of 0.99 will
be met in practice. To illustrate the use of this defini-
tior, Marfz [l16} presents a few examples witn exponential,
uniform, and Rayleigh distributions for failuvre and sepair
times, and shows that the median cycle availability AO.OS
is equivalent to the steady-state availability.
Jakagawa and Goel [131] extend the definition for Martz
for a finite interval. Their definition differs with
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Martz's in that they take into consideraticn the interval

of system operaticn.

availability for Multiple Cycles
and for a Finite Time

Kabak [96] discusses two types of availability:
{1) availability for a given number of cycles, and (2) avail-
ability for a given length of time. His concept of avail-
ability 1is the proportion'of time that system is up and

is denoted by

t+R

where:

t = failure time which has a distribution f£(t),
and

R = a constant repair time.
The availa%ility for one cycle, A(l), is defined

in terms of expected value of f%ﬁ; that 1is,

@©

A(1) =J’ ﬁ-ﬁ £(t)at (3.17)
0

For i cycles, the total elapsed time is T + iR where

o

T = £ t.; iL.e., T ig the i-fold conwvolution of t.

I
The availability for i c¢ycles, A{1}), is the expected value

S v
of T+u{dnd 1s given by: i
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A(i) :‘[- R g{T)dt (3.18)
0

if t has exponential distribution. T has an Erlang distri-
bution with i degrees of freedom.

The finite time availability 1s determined by con-
sidering the number ci times,; n, that the system has
suffered a failure in the interval (0, T) where T 1is given,
and by combining the associated prcbability with tne pro-
portion of available time.

In the limit when T+« the finite time evailability

approaches the steady-cstate availability.

Confidence Interval of Avaiiability

A point estimate of availability has usuallyv been
the only statistic calculated, although decisions about the
true availability c¢f the system should take uncertainty
into account. Uncertanities in the value of MTBF and MTTR

reflect an uncertainty in the value of the point avail-

abiiity

____MTBF
MTBF + MTTR

alt)

Treating tlese uncertain parameters as random variableg,
the distribution of the point availability can be derived
by combzining the distributions of the failuvre and repair

times. Hence, constructing catimates and sonf idencae
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statements for the availability which are consistent wiith
the equivalent statements on the failure time and rapaix
time parameters.

Thompson [172] derives technigues fcr placing a
iower confidence limit on system availability and for
deciding if the true system availability differs signifi-
carntly from a specified value whern MTBF and MTTR are esti-
mated from test data. Assuming times to failure and times
to repair are stcchastically independent random variables
that follow exponential distributions with MTBF = 6 and
MI'TR = ¢ respectively, (1 - a) lower confidence limit
(LCL) for A is obtained by:

A

LCL = == i (3.19)

A+¢F (2n,2n)
QL

l..

where:
0 and ¢ are sample estimates of 6 and ¢ respec-
tively, and

n is the number of failure or repa.r actions.

In a similar manner, a two-sided contidence interval is

derived and given by:

~

LOL, 5 = 9 e e (3.20)
B+dF 21
)+¢Flwu/2(2n,?n)
aF - ( 2n ’ Jn)
wiy /2
sor, = mdmaf2 T (3.21)
oW v 2 -l
dl]‘wl/z(_dl,‘ﬂ)i,
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Butterworth and Nikolaisen [29] are also ccncerned with
the bounds on the availarility function for the exponen-
tial failure discribution and for the general repair time
distributions. They employ the camma, lcg-normal, and
Weiball distributions as repair time distributions. A
bound on tne error is also given. Some numerical examples

are given to illustrate *the practicality of the bounds

presentead.

Bayesian Approach

The Bayesian approach in the formulation of avail-
ability mocdels has been employed in several references
{See Table 3.1). Brender [25] carries out the statis-
tical assessment of system availability within a Bayesian
framework. He considers an availability model consists
of an alterrvating sequence of independent exponentially
distributed operational and repair intervals, with the
failure time and repair time parametars described by dis-
tinct gamma distributions. This model 1s further extended
in Reference 24, in which a more general prior distribution
15 considered for the parameters consisting of a lirear
combination of gamma distributions. Furthermore, a non-
exponential distribution with uncertain scale and shape
parameters is introduced. Gaver and Mazumdar (73] provide
an analysis for a particular class of sampling plans,

with the ultimate goal of estimating the long-run system
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availability. They combine mixed data using snap-shot
data along with subsystem life and repair data for a
simple subsystem.

Thompson and Sprincer [174] extend this result for
a snap-shot data to systems of several subsystems. Here,
snap~shot data merely reveals whether the system is up or
down at the instant when the observation is made and
applies only where the state of each subsystem is recorded
on successive observations. A generalization of Reference
73 to systems of N subsystems can be seen in Reference 173,
where data consists of samples of subsystem life and repair
times.

Brender ([25] develops a Bayes transformation which
utilizes the failure and repair data to readily convert
prior estimates and confidence statements on the avail-
ability into posterior distributions. Thompson and
Springer [174] also carry out a Bayes analysis of system
availability for an N component series system. They deter-
mine the posterior pdf of the availability through the
derivation of the pdf of the product of N independent random
variables using the Mellin integral transform. Confidence
limits on the system availability are then obtained from
the knowledge of the posterior pdf of the availability.

A numerical procedure for computing Bayes confi-

dence intervals for the availability can be seen in

37




Reference 173. Here, both the series and parallel systems

are considered.

A list of references on this topic is in Table

38
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CHAPTER IV

SOME AVAILABILITY MODELS USING THE
MARKOVIAN APPROACH

Single~-Equipment Systems

In this case we have only one unit which can have

one of two states: (1) State 0~-the system is operating,
and {(2) State 1l--the system has failed and is under repair.
Assuming that the failure fate is constant X; i.e., the
failure distribution is expcnential and also the repair
distribution is exponential with mean u. Now since the
conditional probability of failure in t, t+dt is Adt and
the conditional probability of completing a repair in

t, t+dt is udt, we have the following transition matrix:

0 1-) A
P = (2.1)

The system is depicied in Figure 4.1.

The differential equations describing the stochas-
tic behavior of this system can be formed by considering
the following:

The probability that the system is in State 0 at
time t+dt is derived from the probability that it was in

State 0 at time t and did not fail in t,t+dt, or that it
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was in State 1 at time t and returned to 3tate 0 in t,t+dt,

thus we have:

Po(t+dt) = po(t)(l—A.dt) + Py (t)pdt+G(dt) (4.2)

-

Similarly, the probability of being in State 1 at time
t+dt is derived from the probability that the system was
in State O at time t and failed in t,t+dt; or it was in
State 1 at time t, and the repair was not completed in

t,t+dt. Therefore,

Pl(t+dt) = Po(t)Adt + Pl(t)(l—udt) + 0(dt) (4.3)

The term 0(dt}) in both equations represents the
probability of two events taking place in t,t+dt, which
is negligible so we can write the differential equations

in the form:

il

PO'(t) —XPo(t) + UPl(t)

(4.4)

i

Pl {(t) APO(t) - uPl(t)
wiiere:

P.{t) is the probability of being in State i at
1 time t, and

Pi’(t) is the first-order derivative with resnect
to t.

Shooman [165] has described a simple algorithm for writing
the above equations and it is to equate the derivative of

the probability at any node to the sum of the transitions
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coming into the node. Any unity gain factor of the self
loops must first be set to zero and the dt factors are
dropped from the branch gains.

Let the system be in State 0 (in operation) at
time t, then the initial conditions are: PO(O) =1,
Pl(O) = 0. Transforming Equations (4.4) intoc Laplace

transforms under the initial conditions we have,

sPO(s) -1 + XPO(S) - uPl(s) = 0
(4.5)
sPl(S) - XPO(S) + HPI(S) =0
and simplifying
(s+X)Py(s) - upy(s) =1
(4.5)
—A?O(s) + (5+U)Pl(5)‘=0
Using Cramer's rule,
1 —H
]
- 0 ___ st
Zgls) = S+A -u
-A S+
and P (s) = Sty (4.7)
0 s{s+A+pn)

Now the availability function A(t) will be the invecrse

transform of P (5):

0

A{t) = P_(t) = —\-S"ﬁ 4 .«%ﬁ e-—()~+11)t (4.8)

ey




In many cases we are interested in the average
uptime for some dafinite period of time. This can be
found simply by summing A(t) over the time interval of

interest and dividing by the total time.

In this instance, we have:

A(T) = H- 4+ —A - A _ Ty g

MU G e ) 2

If we are interested in the long-term availability of the

system we can let T-»® and find

Alo) = I%E (4.10)

Systems Subije~t to Two Types of Repair

Consider the problem where an equipment is sub-
ject to two types of repair. When the equipment fails for
the first time a partial repair is performed which restores
the system to operation; however, it increases the proba-
bility of failure. After it fails the second time, a
complete repair is performed which restores the equipment
to a "good-as-new" condition. Let Al be the tailure rate
when the equipment has bkeen through a complete repair,

and A? when it has been through a partial repair (Az >Al).

T




Similarly, let vy be the repair rate for a partial! repair,

and be the repair rate for a complete repair (p2< pl).

M2
To formulate the problem we establish four states in which
the system can be at any time: (1) State 0--the system is
operating after a complete repair has been performed;

(2) State l--the system is failed and partial repair is
being performed, (3) State 2--the system is operating after
the completion of a partial repair, and (4) State 3--the
system is failed and a complete repair is being performed.
Figure 4.2 depicts the system states. It has to be noticed

that State 0 and State 2 constitute acceptable system states.

The transition matrix is:

0 1 2 3
0 l-Al kl 0 0
1 0 l-ul Ha 0
P = i (4.11)
2 0 0 l—kz AZ
3 by 0 0 1-u,

The resulting system of differential equations is

PO‘(t) -leo(t) + u2p3(t)
Pl (t) = leo(t) —ulpl(t)
i — - . >
P2 (t) = UlPl(L) A2F2(t)
P3'(t) = )\sz(t)—uzp3(t)
44
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For steady state bebavior it can easily be shown
that the limit of Pi(t) always exists; i.e., Pi = iiﬂ Pi(t).
This means that the steady state solutions can be found by
setting the derivatives Pi‘(t) equal to zero. Then tbe
system cf differential equations reduces to a system of

algebraic equations. So Egquations (4.12) can be reduced

to the following system of algebraic equations:

0 = -)-‘lPO + U2P3
0= X,P. - u. P
o "1l (4.13)
0 = ulPl - >\2P2
0 = )\2P2 - p2P3

To solve these equations we must also make use of the fact

that the Pi's are a probability distribution; i.e.,

t1

Pi = 1. So adding this equation to the above svstemnm
0 °

3

of algebraic equatiocns and solving, we can find the steady-

state availability

Afx) = F, + P.

0 2
2A,uqu
Alx) = AL AU +)\lplu?+>\ AoUatA U uﬂ (4.14)
17271 "2F172 "1722 TZ2T1N2
It car be seen that 1if Al = A2 and Hy = Mo of Equation

(4.14) reduces to u/X4+p, which is the same value in the

previous model.
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System with Series Coniigurations

Consider the simple system where two equipments
are connected in series such that if either fails the wys-
tem fails. For simplicity, we shall assume that each
equipment fails at the same rate, ), and can be repaired
at the same rate, p. Now the system can be thought of as
being In any one of three possible states at some time, t:
(1) “"tate O0--when botl: equipments are operating; (2) State 1~--
wher one egquipment is operwting and the second is under
repair; and (3) State 2--when bcth eyuipments are under
repair.

Since both equipments are required, th=z systeﬁ is
Jefined as down when it reaches sState 1. Thus, A(t) = Po(t),
the probability that the system is in State 0 at tire, t.

The availability function is directly influenced
by the number of repairmen available to service the failed
equipments. So w& wili consider first the case when there
is a single repeairman, and then when there are two repair-

men workxing iidependently or working together.

One Repairma.. Case

Whun a single repairman is available to service the

two eguipments, the system transition matrix P is:

0 1 2
v 1-2) 2 U
P =1 u 1-{A+n) A (4.15)
2 \ 0 M 1-u
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The system can be depicted as in Figure 4.3. The resalting

system of differential egquations is:

Py'leh = = 2xp (1) + vPy (t)
pl'(t) = 2)\P0(t) - (M-u)Pl(ti + P (L) {(4.16)
132 (t) = xPl(t) - “Pz(t)

As mentioned before, this system of diiferential
equations can be colved uvsing Laplace trancTorms. In order
to obtain the steady-state availar:lziy, the stesdy-state
solutions can be found by lettiuo the derivetives equal
zero and using the fact that che system must be in one of
the mutually exclusive states PO + Pl + Pz = 1. Therefore,

the system will be reduced to the following system of

algebraic equations:

= - - P
0 2)\PU i M
g = ZXPO - (k+p)Pl + ”PR
{4.17)
= jol —
0 }\11 ng
1: PO + Pl + P2
[ -9 D » <
Solving for IO’ P1 and P2 we have,
2
P o= M
0 2 . oYy 2
uoo+ 2iu + 2
2. S (N
Py = 2 " - e 2 N
v+ 2ap 4+ 27 %
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_ 2
P, = 2) - (4.18)
T+ 2Ap + 2

The steady-state availability, 2(«), will be:

2
A(w) = P, = —z—-—F" {4.19)
0 2 2+ 222

Next we will consider the case of two equipments in series

with two repairmen.

Two Eyuipments in Series
With Two Repairmen

First, we will consider the case where each repair-
man can only work on one particulay eguipment. The Markov
graph cf this system is depicted in Figure 4.4. The

transition matrix P of this system is:

0 1 2
0 /3.—2>\ 2 A 0
Pp=1 b l-(+y) A (4.29)
2 \ G 21 1-2y

The difference between Equaticns (4.15) and (4.20) is in the
last row. This occur:s hecause if we are in State 2 at
time, t, we can return to State 1 if either of +he

sguipments i1s vepalred.

The steady-state equations of this sysieam are:

e
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0 = - 2xp, + uP

0 1
0 = 2)AP, - (x+p)P, + 24P
. 0 1 2 (4.21)
0 = )\Pl - 2uP2
l = PO + PZL + Pz
Solving, we find that:
2
Al=) = Py = —b— (4.22)
{\+u)

Joint Servicing of Failed Equipments

In the previous case if the two repairmen do not
work independently of each other, 1.e., if there are two
equipment series systems with two repairmen, we might expect
that both of them would attempt to service the equipment
that failed. The only time they would work independently
is when both equipments have failed. Sandler [157]
assumed that if two repairmen are servicing a single equip-
ment, the repair rate is 1.5u. Under the assumption that
if both repairmen are servicing a single equipment and a
second one fails, the second repairman immediately returns
to service his own equipmert. In this case, the transition

matrix will be:

0 1 2

0 1-23 22 0

P= 1 1.50 1-(1.5u+A) A (4.23)
2 \\\0. 2y 1-2y




The steady state eguations of this system are:

— — f g \™
0 = 2AP0 + lnguPl
0 = 2AP, -~ (L.S5u+A)P, + 2up
0 1 2 (4.24)
0 = APl - 2uk2
1l = PO + pl + Pz
Scolving, we find that:
A(=) = P, = Ju (4.25)

0 3+ 42y + 2x2

Availability Models of Parallel
Redundant Configurations

Censider a two-equipment redundant system operating
in parallel which can be in the following states:
(1) State 0--both equipments operating, (2) State l--one
eqguipment operating and one equipment under repair, and
(3) State 2--both equipments under repair.

When the system is in State 2 it is defined as
failed. The transition diagram is depicted in Figure 4.5.
The transition matrix is developed in the same manner

as before. The transiticn matrix P is:

0 1 2
0 1-2X 2\ 0
P =1 U 1-(A+p) A (4.26)
2 G 2u 1-2u
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The transition matrix leads directly to the system of

linear homogenous differential equations which describe

the stochastic behavior of this system and are as follows:
) , - _ . .
L (t) 2AP0(t) + uPl(t)
1} — ~ - . P -
Pl (t) = z..XPO(t) ()\+u)Pl(t) + 2uP2(t) (:.27)
LI SR - - ¢ 4
P2 (%) APl(t) Zuqut)
Corsidering the initial condition, let the system be in
State 0 at time 0, then
; > = 1 : = 1 = ()
‘: IO(O) ), Pl(O) 0, P2(0) 0
f% Taking Lapizace transforms ¢f Equations (4.27),
3.: sPO(s) - PO(O) - ZAPO(S) + uPl(s)
':3 sPy(s) ~ P (0) = 2xP,(s) - (A+p)P;(e) + 2ur,(s)
;% st(s) - P2(O) = XPlis) - 2 2(s)
(4.28)
f%‘ Using the initial conditions, we obtain:
(s + ZK)PO(S) - uPl(S) =1
] : —ZXPO(s) + (s+x+u)Pl(s) - 2uP2(s) = 0
- APl(s) + (s+2u)P2(s) = 0
(4.29)
Solving, using Cramer's rule, we cbtain:
{H‘ 55
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S+ 2A - 0
—2h S+ A+ 0
| )
P, (s) = 0 A ¢ (4.30)
s+2X -u
-2A S+HA+U ~-2U
0 - S+2U
Thus,
2
_ 2X
Pols) = Slev o ¥ 30 (55 ) (4.31)

Breaking this expressiocn into partial fractions we obtain:

. 22~ A B c
s i) (s T s T sov2n T soan (4.32)

{let a =A+p}

) 2
Asz + 3asA + 2a2A + Bs~ + Bsa + Cs2 + 2asC
s (s+2a) (s+a}

FEquating constant terms we have

Az
A = — = (4.33)
(A+pj©
Equating coefficients of s and sz we obtain
AZ
B = ——- {(4.34)
{(A+p)
2
c= -2 (4.35)




Hence,

P (q) = ———X._:z—___ . _l + >\2 . 1 " ‘2/\2 1
2 (A+u)2 S (A+u)2 (s+2X+2u) (A+U)2 (s+A+1)
(4.36)
Taking inverse Laplace transforms,
2
L2 2 ~200+m) © 207 ~(A+u)t
Pylt) = 7 7 © - e
i (A+u) ™ (A+u) (A+1)
(4.37)

Since Pz(t) is the probability of being in the failed

state at time t, the availability at time, t, is given by:

A{t) = 1 - Pg(t) 2= Po(t) + Pl(t) (4.38)
2 2 ~2{A+uit 2 —(A+u) t

A(r) = E-r2M Ll ey 2hE 5 {4.39)
{(X+u} (X+u) {(A+u) '

From Equation {4.39) we obtain the steady-state expres-

sion:
T
12+2R'
A(») = limf A(t)dt = £1etd (4.40)

oo J () 2
In the two-equipment parallel system with two
repairmen, we might expect both of them to work together
if one unit failed. However, they would work independently
if both units are failed. Thus, we may have the case that
if a single repairman services a failed unit, the repair
rate is u, but if two repairmen service the same failed
equipment the repair rate is 1.5y [Sandler 157}. If we
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further assume that when both repairmen are servicing a
single unit and the second one fails, the second repairman
immediately returns to service his own unit, then the

transition matrix is as follows:

0 1 2
0 1-2X 2\ 0
P=1 1.5 1-{1.5u+X) A (4.41)
2 0 21 1-2u

In this case it is assumed that failure of any unit was
detected the instant it occurred. Very often this is not
the case and the repair operation starts only when the
entire system has failed.

Let us consider the model in which only one unit
is repaired if the system of two units is parallel fails
due to failure of both anics. It is only when preventive
maintenance is undertalen that the system is restored to
the state where both units are operating. There i3 only
one repairman. The Markov graph is shown in Figure 4.6 and

the transition matrix is

0 1 2
0 1-2A 22 0
P= 1 0 1-X A (4.42)
2 N\ 0 U 1-u
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The differential cquations are:

Po'(t) = -Z)Po(t)

Pl“(t’ = ZXPO(t} < \Plft) t qu(t) (4.43)
' ~ ) — - .

P2 (v | KPl(t) uPz(t)

Taxing Laplace transforms and using the ini+tial conii-

tions PO(O) = 1, P](O) = 0, and PZ(G) = 1, then:

(s+2X) P, (s) =1

- ZKPU(S) + (s+A)Pl(s) - uszs) 0 (4.44)

- APl(s) + (s*u)Pz(s)t 0

and
:s+2> e ]
|
=20 s+ 0
Pz(s)"* 0= ——~M~w—94r (4.45)
s+2X 0 0
“2X s4 ) -u
0 A s+y
or
AZ
P (s) 2

"2

T sis+20) (s+idpu)

U S WS WY, A S
M+ s tu=x)  (s+2x) (HZ_A2) (s+Ai+yp)

(4.46)

Taking inverse Laplace transforms, we obtain:

€0
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2
R S R S PE e R
Py(th =3 - o5 e + -5 e (4.47)
po=-X
and
. 2
- _ - b A =2ht 0 _2A"  ~(A+u)t
A(t) 1 Pz(t) T+ + s e 2——-——-‘)\2 e f
H (4.48) ]

Mlow if in the system with two units in parallel and two
repairmen, the status of the individual units is ant
mcnitored, repair will not begin until the sys*tem is in
State 2 where Loth unitgs have failed. We can define the
four states with reference to the Markov graph shown in
Figure 4.7 as follows: (1) State 9--both units are opera-
ting; (2) State l--one unit is operating, one failed and
has not been detected; (3) State 2~--botn units failec a4
ara under repair; and (4) State 3--one unit is operating,

one has failed and is uander repair.

The transition ma“rix is: .
.
0 1 2 3 i
¥
0 A-2) 23 0 0
1 0 1-2 A 0
b - (4.49)
< 0 0 1-2y 2y
[iN
3 \ M 0 A 1-(u+Xr) ‘

The system of the differential equations is:
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o " (E) = 23P (%) + RPL (L)

Pl'(t) = ZAPO(t) - AP, (t)

1

P,T(E) = APl(t) - 2UP, 't} 4+ AP3(t)

2

(t) = 2up,(t) - (u+X)P3itD
(4.50)

Taking the inverse Laplace transforms with the inicial

condition PO(O) =1, Pl(O) = 0, P,{0) = 0, and P3(O) = 0,

we have

(s+2X)PO(S) ~uP3(s) =1
-2h P.(s) + (3+R)Pl(s) = )
- APy (8) = (s+2u)P,(s) - APy (s) = 1
- 2P {(s) + {s4 +A)P.,(s)

z 3

li
o

{4.51)

s+2) 0 1 -1

-2\ s+ 0 0

0 0 0 S+t

Pz(s) = - 4.52}

s+ 2\ 0 0 -

-2\ S+A 0 0

0 - S+ 21 -X
|

0 0 =21 S+p+X[
I

where the numerator = 2K2(s+u+k) and
" .
the denominator = s(s+3l){5“+s(3u+k)+2u2}.
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The scluvion for the roots of sZ + s{2u+A) + 2u‘ yields

. oo 2 2
£yaf, = :._‘ik,:f_;.z)__;-té_,. A3u+r) -8y (1.53)
Hence,
2A2(s+p+*)
= A 5a
1)2(5) 5(5'5_3)\)(5_:..})(3_1,2) (4..)«)

Breaking this expression inte partial fractions,

-
Poye) e e e g by B (4.55)
4 <3 34+ oA F’w"Zl s--r2

“he valaes of 4, B, ¢, and L cun ke fonnd ky sapression.

Tak it the inverse laplace transforms, we obtain,

. X,u vt
P,/.,(t) = A + Pe SR Cel +pe ? 14.56)
and the evaliability 1s given by.
A{t)y = 1 - p_1(t) (£.57)

Inspection of the guadratic egquation for £y T shows that

Ty and r, are /Lways negative real rumbers since ) and yp

are ailways pesitive; thereifore, all the “ime horizons

are decaying exponentially and the instantaneouvs availabil-

ity, Alt), rapidly conveiges to the steady-state value.
Equation (4.56) iz complex in nature dre to r, and

r., not having simele forms and. cunseguently, .t .& rot

n

<
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easy to oktain the steady-state availability from Equation
(4.57). But the steady-state availability may be obtained
by studying the steady-state behavior. This steady-state
solution can be found by setting the derivatives Pi'(t)
equal to zero. Then the system of differential equations
reduces to a system of algsbraic equations. The additional
ract that Pi“s are a probability and hence

) Pi = 1 needs to Le used where n is the number of
1=0 -
possibie states. ESo to obtain the steady-state availabil-

ity the et »f equations is:

0 = = ZAPO + pP3
0 = ZAPO - xpl
0 = APl - ZUP2 + APB (4.58)
0 = 2uP2 - ()\+u)P3
1 = PO + Pl + P2 + P3

Sowving for Pz using the last four equations,
22 ~A 0 0
0 A 0 A
0 0 0 = (A+n)

b - 1 1 1 1] 23(x2;xg) i

22 - 0 0 6UAT+2AT+6) 1
0 A -2y A
0 0 2u ~(A+u)
1 1 1 1
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2
P, = 2* A u . {4.59)
2243 p A 430

The steady-state availability is:

2
Ale) =1 - p, = 22 pA +3y : (4.60)
AT+3 pA +3y

Many complex prcblems can similarly be solved for the

steady-state availability without too much difficulty.

Availability of Standby
Redundant Configqurations

Standby redundancy assumes that the off-line
equipment. (s) either cannot fail or have a failure rate
less than on~line equipments. When this is true, we would
expect a system's availability to be greater with standby
redundancy than with parallel redundancy. Consider a two-
equipment standby system where the on-line equipment fails
at the rate, A, and the off-line equipment cannot fail
until it is switched to an on-line position. Assuming
perfect switch reliability., the transition diagram for
this system is depicted in Figure 4.8.

The transition matrix for this system is:

0 1 2
0 1-A A 0 \
P =1 Y 1= (Ay) ) {4.61)
2 0 W 1-11/
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$ =%

The steady-state eguation of this

0 =

- AP

0

+ uPl
+ 1 - (>\+U)Pl
+ APl
+ Pl

The steady-state availability can

A(x)

A=)

P. + P

0

L =1-P

68
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system is:

be found as:

(4.62)

(4.63)




CHAPTER V

CORRECTIVE AND PREVENTIVE MAINTENANCE
AND OPTIMIZATION TECHNIQUES

Effect of Corrective and
Preventive Maintenance

At one time or another all reccverable systems
are subiject to some form of maintenance. In general,
there are two categories of maintenance actions. The
first is off-shedule or corrective maintenance and is per-
formed whenever there is an inservice failure or mal-
function. The system operation is restored by replacing,
repairing or adjusting the compcnent or components which,
caused the interruption of service. The second category
is the scheduled or preventive maintenance and is performed
at regular intervals to keep the system in a condition
consistent with its built-in levels of performance reli~-
ability and safety. According to Bazovsky [14]), during
preventive maintenance, servicing, and inspection, minor
ard major overhauls are done such that

1. regular care is provided to ncrmally operating
subsystems and components which require such

attention {(lubrication, refueling, cleaning,
adjustment, alignment, etc.);

2. failed redundant components are checked, replaced,
or repaired if the system contains redundancy; and
3. components which are nearing a wearout condition

are replaced or overhauled.
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Preventive maintenance is usually associated with
wearout failures. Preventive maintenance policies consist
of scme action depending upon either the operating age
of certain components in the system, the state of the
system degradation, or the system configuration. In the
first case, a preventive maintenance peclicy 1is usually
some program for the planned replacement or repair of cer-
tain critical components after they have accumulated a
given number of operating hours. 1In the second case, the
preventive maintenance policies are designed to minimize
the time the system will spend in the degraded state.

In the third case, the preventive maintenance policies
consist of periodic inspection and repair to increase the
mean life of the system.

Planned replacements or maintenance actions are
advantageous for systems and parts whose failure rate
increase with time, or are less costly to replace cor
vepair when operating than after failure. Under preven-
tive wmaintenance policies it may be possible either to
increase a piece of equipment's availability or relia-
bility or to minimize the total cost of replacement and
repairs. 7Tiuas, ¢ne of the most impertant maintenance
problems is that of spocifyinyg a maintenance policy which
balances the cost of failures against the cost of preven-
tive maintenance ac-ions in order to minimize total

maintenance cost. For preventive muintenance to be
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worthwhile, the failure rate of the system must increase
over time or the preventive maintenance <f the system must
cost less than the corrective maintenance. Normally, pre-
ventive maintenance for a component is assumed to have the
same effect as the replacement of the component. In
general, four different types of preventive maintenance /

are possible (see Table 5.1).

TARLE 5.1

TYPE OF PREVENTIVE MAINTENANCE

Type cf Preventive Maintenance References

Block repiacement type 10, 17, 39, 175, 185, 195

8, 11, 1 38, 41, 52,

Age replacement type
112, 125, 133, 155, 181~

184, 195
Random periodic replace- 10, 26, 64, 78, 182, 183
ment type 195
Sequentially determined
replacement type 8, 10-12, 98, 195

In block replacement, all components of a given
type are replaced (or repaired) simultaneously at times
independent of the failure history of the system. This
policy is perhaps more realistic than others since it does
not require the keeping of records on cohponent use, but
it has the undesirable characteristic that relatively new
components are replaced. This method is sometimes called

minimal repailr-replacement type because for failure only a
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minimal repair is done, then the system is always replaced
at age T. By definition, a minimal repair does not

affect the hazard rate of the system but it enakles the
system to continue its work. It is often called "bad as
old."

In age replacement, we replace a component exactly
at the time of failure or at T hours after its installa-
tion (previous replacement or previous preventive main-
tenance), whichever occurs first (T is constant). The
random periodi: poiicy differs only in that T is a random
variable. Gopalan and D'Souza [78] have found the avail-
ability and reliability of a l-server 2-unit system sub-
ject to preventive maintenance and repair undex the
assumption that the pdf's of the times to failure and to
preventive maintenance of a unit are arbitrary, while the
repair and preventive maintenance rates are constant but
different. Gopalan and Venkatachalam [81] extended this
work to a n-~unit system and also they analyzed a n-unit
system in which each unit consists of two components con-
nected in series. The sequentially determined replacement
policy 1is one in which the replacement interval is deter-
mined at each removal (or preventive maintenance} 1in accord
with the time remaining to the time span.

The earliest approach to the planned replacement
problem was done by Campbell {36! and Welker [1853]. It
is concerned with mass replacement, and develops a method
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for determining optimum replacement intervals for certain

- vacuum tubes. Optimum block replacement policies for an
infinite time span is also studied by Savage [l16l]. A
theory of optimum sequential replacement policies for the
case of a finite time horizon has been developed by Barlow
and Proschan [12]. They show that for a finite time
horizon there exists policies which require that after
each removal the next planned replacement interval is
selected tc minimize the expected expenditure during the
remaining time, :nd that thesc policies will be more effec-
tive than a fixed replacement policy. Hcwever, periodic
or preventive maintenance policies assuming an infinite
usage horizon seem to have received the most attention in
the literature.

«rlier work on restricted forms of preventive
maintenance problems is found in Reference 181. 1In a
series of reports. Weiss [181-183] considers the effect
on system reliability and on the maintenance costs of both
strictly periodic and random peviodic maintenance or
replacement policies for an essentially infinite usage
period. The operating characteristic of random periodic
policies is determined by Flehinger [64]. Derman and
Sacks [52] obtain the optimal replacement policy for a
piece of cquipment in which the decision to replace

depends upon the observed state of the equipment deteriora-

tion at specified poants in time. The derivation of an
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opt imum periodic maintenance interval c¢orresponding to a
given firite rfpan is basically a much more dirfficult
pcoblem. Barlow and Proschan [11' prove the existence

of such an optimal policy. Purlier, they carefully expose
the cirictly periodic and random periodic maintenance
preblens, and have shown that for an infinite time hori-
zon here always exists a strictly periodic maintenance
pcelicy which 1is sﬁperior to a random policy [12].

Meyers and Pick (120] have studied the effects of
prevertive rmaintenance on availability for a system com-
pesed of similar components where at least n out of m
components must operate for the system to function.
Nakacawa and Ogaki [132] buave dealt with optimal preven-
tive maintenance policies to maximize the availability for

L 2-unit redundan*t syscvem.

Optimal Allocation of Availability Parameters

As the high degree of complexity is involved in
many of the modern-day systems, much interest has been
shown 1in allocating the availabilicy parameters at com-
ponent levels in the early stages of system desiga. The
pr— v ical problem is to determine those parameters from a
design, redesiyn or operating point of view so that some
measure such as cost or weight of the system i1s minimized
while a system availability reguirement is met. Various
combinations cf availability parameters are used as deci-
sion variables i1n the allocation problem (see Table 5.2).
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TABLE 5.2

AVAILABILITY PARAMETENS
(decision variables in tho nodel)

Availability Parameters References

MTBF and MTTR 96, 119, 145, 164, 190, 193

Numbers of redundant
components 94, 138, 157

MTBF, MTTR, and nunber of
redundant components 75, 110

Failure rate, repair rate,
and preventive mainte-
nance period 39, 175, 176

Failure rate, mean correc-

tive maintenance time,

mean preventive mainte-

nance time, and age for

preventive maintenance 112

The optimization technigues employed for the

availability allocation problem are summarized in Table 5.3.

TARLE 5.3

OPTIMIZATION TECHNIQUE EMPLOYED FCR
AVAILABILITY ALLOCATION

Optimization Technique References
Dynamic Programmindg 94. 110, 157, 164, 190
Integer programming 160
Geometric programming 96
l.agrange multipliers 75, 119, 164, 176
SuMmT 38, 39, 112, 175
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The tradeoff technigue between reliability and
maintainability is discussed by Goldman and Whitin [75].
They employed Lagrange: multipliers and show how the
availatility parameters consistent with the minimum cost
operation and the specified system availability can be
calculated. Xaobak [Y6] has used geometric programming
te determine the optimal design parameters taat m.nimize
total system cost.

Jonnscen [94) presents a methodolooy for optimizing
the cost function under the pregdeterminaed availability
level. McNichols ana Messer, Jr. {[119] have employed a
cosc-pased procedurs for allocating the availability
paramet2rs at components leveli. The allocation problem
is expressed as the minimizaticr of the total improvement
cost, subject to the constraint of meeting the system
availability goal, and is solved using the Lagrange multi-
pliers method. This allocation technique is applicable to
systems which can be described as a series mcdel; that is,
all ccaoponents are nececssary for proper system function-
ing. Extension to other models has not heen considered
although it appears feasible and would greatly expand the
usefulness and application areas of the allocaticn prob-
lem.

It it also assumed that the individual components
exhibit coastant failure rates and that failures occur
independently. The removal of these assumptions would
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generalize the ailocation procedure and certainly make it
more realistic. However, without the congstant failure
rates assumption, analytic solutions are usually not
feasible . and often impossible. The effects of various
moies G ilure could be investigated by careful analysis
and pred.. ion of possible failure patterns, and subse-
quent d-*ermination of the effect of these on the system
availability.

The cost equations used in this development
describe the costs associated with the improvement of
component failure rates and repair times from achieved
levels. Thus, the availability requirement is attained in
the manrer that requires the least cost in improvement of
design and equipment. Although this problem is .mportant
to design and development groups, the allocations should
be made on the basis of minimizing the cost of the system
throughout its life. In this respect, the cost equations
could be expanded to include the effects of component
allocations on such costs of system ownership as sparing
and downtime. The ultimate goal would be to allccate to
the system components the levels of reliability and main-
tainability that would minimize the overall toutal system
lifetime costs.

Shershin [164] has dealt with mathematical means

for coptimizing the simultaneous anportionments cf
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reliabilitv and maintainability by means of hoth Lagrange
multipliers technigue and dynamic nrogramming .

Wilkinson and Valvekar [1%30] have also used
dynanic progwramming for optimally allocating availability
to & multicomponent system., They determine the MTBF and
MTTR that minimize the system cost under the minimam
aveilapility reguirement. As an extensicn of this study,
Lam.ert et al. [110) present a method for determining the
optimam MTBF, MTTR, and the number of redundant common-
ents for a multistage system to achieve a given availabil-
ity at minimum cost by dynamic programming.

Tiliman and Chatterijee [175]) have studied the
problem of allocating the failure rate, repair rate, and
preventive maintenance period to each component of the
gsystem consisting of n subsystems in series where each
subsystem has twe identical components in parallel. An
extension of this study can be seen in Reference 112, in
which availability parameters consist of failure rate,
mean corrective maintenance time, mean preventive main-
tenance time, and age for preventive maintenarce of cach
component.. Furthermore, a general series-parallel system
configuration 1s considered. 1In both studies, the sequen-
tial unconstrained minimization technique (3UMT), which
incorporates the Honke and Jeeves pattern search and

heuristic programming, emplcayed

v
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In Reference 38 not only the availakility is con-
sidered, but both the availability and mean cycle-time
are considered as constraints of the system. The objec-
tive is to maximize the system cost including the recur-
ring ard nonrecurring cost. In this study only the age
replacement is considered, but the approach can be readily
applied to other replacement policies. The problem is
formulated and solved as a nonlinear programming problem.

Lie [112] studied the optimal availability alloca-
tion problem for a series-parallel system consisting of
subsystems in series, where each subsystem has identical
units in parallel having various probability density
functions for failure and repair times of each unit. 1In
developing the avail.ibility models, two types of main-
tenance policies for each subsystem are considered. The
corrective maintenance is performed when the subsystem
fails due to the failure of all redundant units and the
preventive maintenance is scheduled at a fixed age of the
subsystem and 1s actually periformed only if the subsystem
has not failed before this fixed age.

Preventive maintenance action consists of replac-
ing or repairing only the failed units if each unit has a
constant failure rate and replacing both failed and
unfailed units if each unit has an increasing failure rate
with time. Thus, ecach subsystem 1s assumed to be fully

restored after the completion of either ccrrective or
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preventive maintenance. The cost of the system consists
of three components--the cost for designing the mean time
between maintenance and mean corrective and preventive
maintenance time, the cost for corrective maintenance, and
the cost for preventive maintenance. The optimal avail-
ability allocation problem, is then to determine individual
units availability specifications which will minimize the
total coét of the system under the constraint of meeting
the system availability requirement. Both the cost func-
tion and the availability equation of the system are non-
linear; the optimization methods employed to solve this
problem are both generalized reduced gradient (GRG)

method and sequential unconstrained minimization technique

(SUMT) .

Summary and Recommendations

Summary

This thesis presents the results of an extensive
literature review on availability of maintained systems.
In Chapter II the different concepts and definition of
availability is discussed; then a survey of the basic ele-
ments cf availability is made to include the failure
process, repair process and system configuration. The
references are classified according to the last three
elements. In Chapter 111 the different approaches used in

obtaining availabpilit methods are discussed. In
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Chapter IV many availability models using the Markovian

approach are presented. 1In Chapter V the effect of preven-

tive maintenance policies on availability is explained and

classification of the availability parameters used inn the

model and system optimization is presented.

Recommendations

While this survey covers a wide variety of topics

on availability, there are some interesting

areas for

future research. One of the major areas is the situation

when the Markovian conditions are not met or not approxi-

mately met and non-~Markovian models must be
opment in this area would permit the use of
other than the exponential. The whole area

switching needs t¢ be studied. The perfect

used. Devel-
distributions
of non-perfect

switching

models are the easiest to develop but, in practice, non-

perfect switching cascs are cncountered.
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